

About us

Who we are:

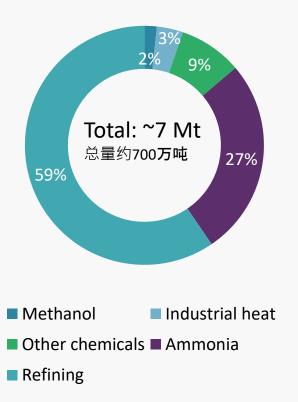
Agora Industry is a think tank, policy lab, and part of the **Agora Think Tanks**

What we do:

We develop scientifically sound and politically feasible strategies for a successful pathway to climate-neutral industry – in Germany, Europe and internationally

How we work:

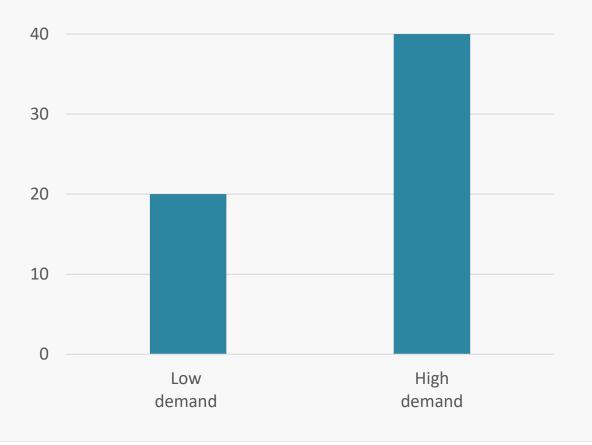
We are independent and non-partisan, with a diverse financing structure – **our only commitment is to climate action**


Where we take action:

Agora Industry has offices in Berlin, Brussels, Beijing and Bangkok, and cooperates with a wide network of partner think tanks on the ground

Today's industrial hydrogen consumption in the EU amounts to 7 Mt p.a. 目前欧盟的工业氢年消耗量为 700 万吨

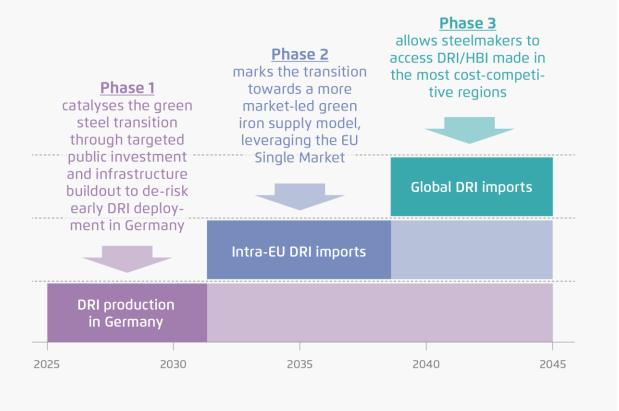
Hydrogen use by application 氢的应用



- \rightarrow **Refining** is dominant, but only ~20% of it is for industrial feedstocks. Total refining will decline with rising electrification of transport. 用于炼油的占比最大,但其中只有约20%用作工业原料。随着运输电气化程度的提高,氢气 在炼油业的使用量将会下降
- → **Ammonia** is mainly needed for nitrogen fertilizer production 氨主要用干氮肥的生产
- → **Methanol** and other chemicals (acids etc.) 甲醇和其他化学品(比如各类酸)
- → Industrial heat demand is met by burning mostly by-product hydrogen 工业用热需求主要通过工业副产氢来满足
- → Emerging applications such as steel are not shown here (less than 1%) 氢冶金等新兴技术运用没有呈现在图例中(占比小于1%)

By 2050, the EU's industrial hydrogen demand will amount to 20 to 40 Mt 到2050年,欧盟工业氢需求量将达到2000万至4000万吨

Industrial demand for pure hydrogen 2050 in Mt p. a. 2050 年工业对氢的需求量(百万吨/年)



- → **Direct reduction of iron (DRI)** with hydrogen is an important new use case **氢直接还原铁(DRI)**是一项重要的氢能应用新案例
- → **High H2 demand** scenario: Feedstock production entirely in Europe 氢能高需求情景: 原料全部在欧盟生产
- → Low H2 demand scenario: ~50% of imports of high-value chemicals and sponge iron (DRI) to Europe 氢能低需求情景: 欧盟进口的高价值化学品以及海绵铁(DRI)约占50%

Imports are part of a three-phase approach to climate-neutral steel production 进口是钢铁生产实现气候中和的三阶段战略中的重要构成

Phases from the perspective of Germany and the EU 从德国和欧盟角度观察的三个阶段

The three-phase strategy could entail:

三阶段战略可以包含:

- 1. Supporting domestic green iron projects in Europe 支持欧盟境内的绿钢项目
- 2. Leveraging the EU single market and 利用欧盟单一市场
- 3. Complementing this with green iron imports into EU 并兼顾欧盟的绿钢进口
- → Note: Chinese version of Agora publication on Green Iron Trade forthcoming

敬请留意:Agora关于绿钢交易的中文版研究即将推出(日期待 定)

Germany's chemical industry could transition to biomass, recycling & hydrogen

德国化学工业或将朝生物质能、回收利用和氢能转型

Share of feedstocks for chemicals 化工业的原料份额占比

Status quo 目前份额

Climate-positive scenario 气候正效益时的份额

- Fossil imports
- 化石燃料进口
- Electricity
- Energy recovery
- 能源回收
- Hydrogen
- 氢能
- Recycling
- 循环利用

Biomass

生物质能

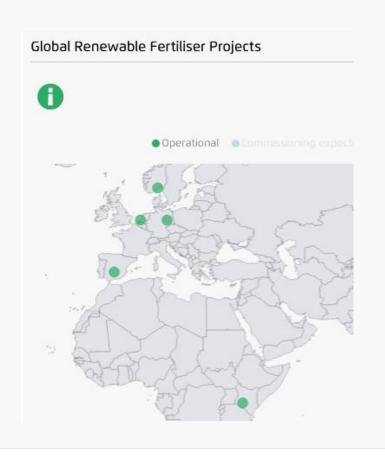
→ **Today,** German industry heavily depends on expensive and unsecure imported fossil fuels

现今,德国工业严重依赖昂贵且进口贸易充满不确定的化石燃料

- → **Domestic recycling and biomass** will strengthen resilience, reduce import costs of fossil fuels, create jobs and lead to negative emissions 发展国内循环利用和生物质能将增强产业韧性,降低化石燃料进口成本,创造就业机会, 并带来负排放
- → International trade with green intermediate products could further reduce costs.

推行绿色中间产品的国际贸易可进一步降低成本

→ **Recommendation**: Create international alliances for fossil-free chemicals


建议:建立国际零化石燃料化工联盟

Renewable ammonia: Demand and supply challenges

可再生氨:供需面临的挑战

Green fertiliser projects in operation 正在运行的绿色肥料项目

- → **Demand side**: How to distribute the green premium for renewable fertiliser along the value chain? (<1% for a loaf of bread, but significant for farmers) 需求端:如何将可再生肥料的绿色溢价分配到价值链的各个环节?(虽不到价值链的1%, 但对农民来说意义重大)
- → **Supply side**: Unclear transformation path beyond 15-20% drop-in renewables for brownfield ammonia plants based on steam-methane reforming

供应端:对于采用蒸汽甲烷重整技术的棕地氨厂而言,超过15-20%可再生能源替代率的转 型路径尚不明确

→ **Decentralized renewable nitrogen fertiliser** with or without hydrogen production step will likely have a role to play in some locations, as described in new Agora publication 正如Agora最新发表文章所述,分散式可再生氮肥,无论是否包含制氢步骤,都可能在一 些地区发挥作用

Challenges to hydrogen in industry and recommended approaches

工业氢面临的挑战以及推荐的应对方法

Challenges

→ Supply: Higher cost of renewable hydrogen

供应:可再生氢成本较高

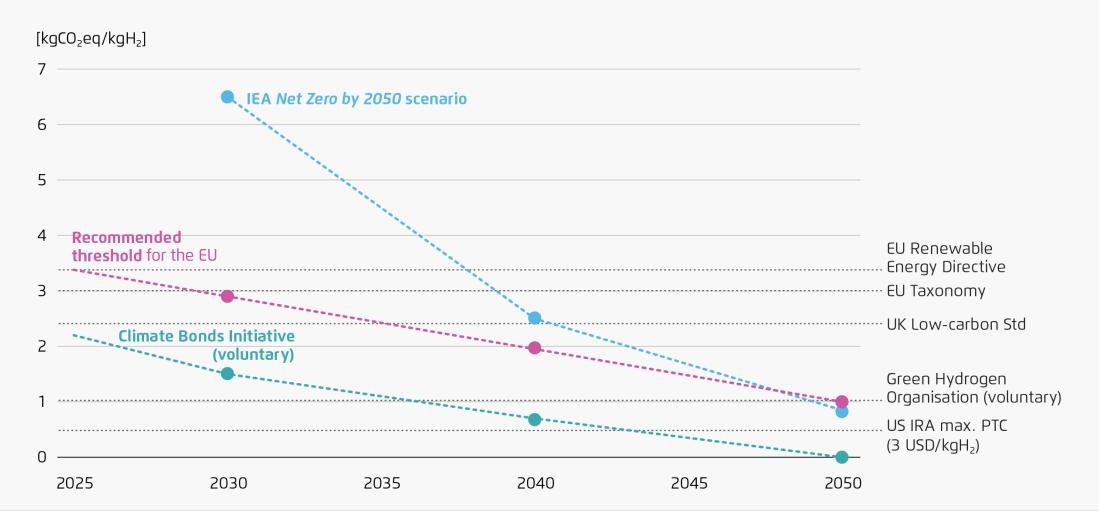
→ Infrastructure: Financing H₂pipelines through Europe

基建:如何为经过欧洲的输氢管提供财政支持

→ Demand: Missing long-term offtake

需求:长期需求无法保障

Recommendation


- → Carbon pricing (ETS) with carbon leakage protection 推行碳定价(ETS)及碳泄漏保护机制
- → Enable intertemporal cost allocation for pipelines 为输氢管道启用跨期成本分配
- → Carbon contracts for difference to bridge cost gap 利用碳差价合约弥补成本缺口
- → Establish and scale green lead markets for steel, chemicals and fertiliser, e.g. via aligned labelling and standards

通过比如统一国际标签和标准,建立并扩大钢铁、化工和化肥 行业的绿色先导市场

Outlook: The EU needs a periodically tightening GHG threshold for hydrogen

展望: 欧盟需要定期收紧氢能温室气体排放阈值

Summary

- → **Industrial demand** for climate-neutral hydrogen in the EU is expected to rise to 20–40 Mt p.a. by 2050 预计到2050年,欧盟对气候中性氢的工业需求将增至每年2000万至4000万吨
- → Sustainable biomass can contribute to a shift away from fossil-based feedstocks 可持续生物质能有助于摆脱对化石原料的依赖
- → Carbon pricing and policies for securing offtake and infrastructure financing are key for hydrogen development 碳定价以及保障长期需求和基础设施融资的政策是氢能发展的关键

- → Importing intermediate products to the EU would reduce pure hydrogen demand and cost 进口中间产品到欧盟或将降低纯氢的需求和成本
- → Establishing international partnerships for future trade in green iron or chemicals should start early and consider aligned labelling and standards

应尽早启动建立针对未来绿钢或化学品贸易的国际伙伴关系,并考虑采用统一的国际标签和标准

Thank you for your attention!

Do you have any questions or comments?

Matthias Deutsch <u>matthias.deutsch@agora-industrie.de</u>

Follow me on Bluesky: matthiasdeutsch.bsky.social

www.agora-industry.org

Register yourself for our <u>newsletter</u>

Publications and tools on electrons and molecules by Agora Industry

Electrons

Power-2-Heat Impulse

Direct electrification of industrial process heat Study EU map with production cost of electrons and molecules Tool

Low-carbon hydrogen in the EU Impulse

Hydrogen imports to Germany Study (DE)

Prioritising hydrogen for the most effective uses Slide deck Insights on hydrogen (publication series)
Global (EN),
Argentina (ES),
Brasil (PT),
SEA (EN),
Tool

Industrial value chain trans-formation
Impulse
PtX cost tool

Impulse
Global Green
Fertiliser Tracker

