# LUT Energy System Transition Model







#### LUT Energy System Transition Model Overview: Data flow

#### Open your mind. LUT. Lappeenranta University of Technolog:





LUT Energy System Transition Model

2

more information ► <u>Christian.Breyer@lut.fi</u>

### LUT Energy System Transition Model Overview: Sectoral perspective & key features



<u>dena</u>



#### Key features:

- full hourly resolution, applied in global-local studies, comprising about 120 technologies
- used for several major reports, in about 50 scientific studies, published on all levels, including Nature
- strong consideration on all kinds of Power-to-X (mobility, heat, fuels, chemicals, desalinated water, CO<sub>2</sub>)

# LUT Energy System Transition Model

**Overview: Key objectives of modelling** 



Definition of an optimally structured future energy system based on 100% RE

- optimal set of technologies, best adapted to the availability of the regions' resources
- optimal mix of capacities for all technologies and according to the sub-regions in Indonesia
- <u>optimal operation</u> modes for every element of the energy system
- least cost energy supply for the given constraints
- GHG emissions

#### Key input data

- historical weather data for: solar irradiation, wind speed and hydro precipitation
- available sustainable resources for biomass and geothermal energy
- synthesised power load data
- energy services demand for all sectors
- efficiency/ yield characteristics of RE plants
- efficiency of energy conversion processes
- capex, opex, lifetime for all technologies
- min and max capacity limits for all RE resources
- nodes and interconnections configuration

#### Key features

- bottom-up techno-economic model
- myoptic (5-yrs) & perfect foresight (8760 h)
- linear optimisation model
- hourly resolution
- multi-node approach
- multi-sector design
- multi-scenario variation/sensitivity
- technology-rich
- flexibility and expandability
- enables energy transition modeling
- transition scenarios in 5-year steps

LUT Energy System Transition Model

more information ► Christian.Breyer@lut.fi



The two central equations are the target function and the energy balance

Target function: minimum annualised cost of the entire energy system

$$\min\left(\sum_{r=1}^{reg}\sum_{t=1}^{tech} (CAPEX_t \cdot crf_t + OPEXfix_t) \cdot instCap_{t,r} + OPEXvar_t \cdot E_{gen,t,r} + rampCost_t \cdot totRamp_{t,r}\right)$$

For every hour of the year energy supply and demand must be balanced

 $\forall \mathbf{h} \in [1,8760] \ \sum_{t}^{tech} E_{gen,t} + \sum_{r}^{reg} E_{imp,r} + \sum_{t}^{stor} E_{stor,disch} = E_{demand} + \sum_{r}^{reg} E_{exp,r} + \sum_{t}^{stor} E_{stor,ch} + E_{curt} + E_{grid}$ 

• All energy sectors and regions are coupled, and have to fulfill these two central equations

## LUT Energy System Transition Model

**Overview: Long-term models in comparison** 

|                                  |                         |         | V        |                                  |                       |              |
|----------------------------------|-------------------------|---------|----------|----------------------------------|-----------------------|--------------|
| Bottom-up<br>long-term<br>models | Foresight .<br>approach |         |          |                                  |                       |              |
|                                  |                         | In time | In space | In techno-<br>economic<br>detail | In sector<br>coupling | Transparency |
| LEAP [120]                       | Perfect<br>foresight    | Low     | Low      | Low                              | High                  | Medium       |
| MARKAL/TIM<br>ES [101,102]       | Perfect<br>foresight    | Low     | Medium   | Low                              | High                  | Low          |
| OSeMOSYS<br>[104,105]            | Perfect<br>foresight    | Low     | Medium   | Low                              | High                  | High         |
| Temoa<br>[107,108]               | Perfect<br>foresight    | Low     | Medium   | Low                              | High                  | High         |
| MESSAGE<br>[110]                 | Perfect<br>foresight    | Low     | Medium   | Low                              | High                  | Low          |
| Balmorel<br>[112]                | Perfect<br>foresight    | High    | High     | Medium                           | Low                   | High         |
| eMix [121]                       | Perfect<br>foresight    | Medium  | Medium   | High                             | Low                   | Low          |
| EPLANoptTP<br>[119]              | Perfect<br>foresight    | High    | Low      | Low                              | High                  | Medium       |
| Mahbub et al.                    | Myopic                  | High    | Low      | Low                              | High                  | Medium       |
| LUT<br>[114,117]                 | Myopic                  | High    | High     | Medium                           | High                  | Medium       |

- We have been ranked as one of the more advanced energy models among all available energy models, which is capable of handling long-term energy transitions with high time resolution, high geospatial spread and importantly built-in sector coupling
- MESSAGE is the only Integrated Assessment Model (IAM). It is a leading IAM. AIM/CGE is comparable.

6



### Assumptions Country structure





- Indonesia is structured into 8 regions: Sumatra, Java West, Java Central, Java East, Nusa Tenggara, Kalimantan, Sulawesi, Maluku and Papua
- Regions can be interconnected with power lines, as indicated in the diagram
- Data are allocated to regions for energy services demand and energy resource potential

more information ► <u>Christian.Breyer@lut.fi</u>

## Scenarios CPS, DPS and BPS



 The Indonesia energy system transition is modelled for 3 distinctive scenarios, with a cost optimised energy mix determined for each, Current Policy Scenario (CPS), Delayed Policy Scenario (DPS) and Best Policy Scenario (BPS)



## CPS

- Minimum ambition pathway
- High system inertia
- No phase-out of fossil fuels
- Around 89% increase in GHG emissions by 2050\*
- Delayed introduction of GHG emission cost
- Global Paris Agreement violated (1.5°C - 2°C), as GHG emissions do not stabilise but further increase until 2050



- Medium ambition pathway
- Medium system inertia
- Partial phase-out of fossil fuels by 2050
- About 75% reduction in GHG emissions by 2050\*
- Delayed introduction of GHG emission cost
- Global Paris Agreement achieved (1.5°C - 2°C)



- High ambition pathway
- Low system inertia
- Phase-out of all fossil fuels
- 100% reduction in GHG emissions by 2050
- Early introduction of GHG emission cost
- Global Paris Agreement achieved with high ambition (1.5°C)

\* reference year for GHG emission development is the year 2020

LUT Energy System Transition Model

more information 
Markow Christian.Breyer@lut.fi

## Assumptions Fuel prices, WACC



|                   | Year              | 2020  | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |          |
|-------------------|-------------------|-------|------|------|------|------|------|------|----------|
|                   | Coal              | 10.3  | 11.3 | 12.4 | 13.8 | 15.0 | 15.0 | 15.0 | €/MWh,th |
| Fuel prices       | Light fuel<br>Oil | 39.9  | 45.1 | 50.3 | 49.8 | 49.3 | 49.3 | 49.3 | €/MWh,th |
|                   | fossil gas        | 22.3  | 30.1 | 32.7 | 36.1 | 40.2 | 40.2 | 40.2 | €/MWh,th |
| GHG<br>emissions* |                   | 9     | 32   | 45   | 57   | 68   | 80   | 91   | €/ton    |
| WACC              |                   | 10.0% | 9.5% | 9.0% | 8.5% | 8.0% | 7.5% | 7.0% |          |

 coal, oil, fossil gas price for 2020 based on IESR/LUT data. Future projections based on growth rates according to Bloomberg and IEA

Exchange rate used uniformly 1€ = 1.1\$

\* depends on the scenario, for BPS it starts from 2020 and for DPS and CPS it starts from 2030

LUT Energy System Transition Model more information ► <u>Christian.Breyer@lut.fi</u>

## Assumption Population





source: Institute of Essential Services Reform

10





**Electricty Demand** 

- growth rate 4.4%
- strong increase in GDP and per capita electricity growth considered in total electricity demand during the transition

source: Institute of Essential Services Reform

LUT Energy System Transition Model

more information 
Christian.Brever@lut.fi



The upper limit of solar PV capacity for each of the regions is calculated based on area availability\*, PV module efficiency, and respective specific capacity.

#### Area limits

12

- a 50% cap on the area availability (after excluding forest and water) is added till 2045; and in 2050, 60% can be used for PV installations;
- Java: 3% of the land area is available till 2045, and 4% in 2050; all other regions: 6% of the land area is available

| module efficiency increase based on PV module efficiency 18.0% 20.0% 22.0% 24.5% 27.0%                                |                                                                                                            |     |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                       | Increase based on PV module efficiency 18.0% 20.0% 22.0% 24.5% 27.0% 28.5% 30.0                            | 0%  |
| Vartiainen et al. (2020), Progress in PV, 28, 439-453 specific capacity MW/km <sup>2</sup> 75.0 83.3 91.6 102.0 112.4 | 20), Progress in PV, 28, 439-453 specific capacity MW/km <sup>2</sup> 75.0 83.3 91.6 102.0 112.4 118.6 124 | 1 8 |

#### Solar PV upper limit for installed capacities (GW)



#### Solar PV potential

LUT Energy System Transition Model

more information 
Christian.Breyer@lut.fi

\* land availability here is after excluding area occupied by forest and water





- LUT model is ranked among the most sophisticated long-term energy system models
- Validation of the LUT model in more than 50 scientific articles
- Multi-node, multi-sector, multi-scenario hourly bottom-up model
- Cost optimised pathways for defined scenarios
- LUT model is optimised for the core features of energy systems of the 21<sup>st</sup> century: renewable electricity and sector coupling, in addition to all classical fuels, plants and demands

13

# Thank you !

Further information and all publications at: <u>https://www.scopus.com/authid/detail.uri?authorld=39761029000</u>

