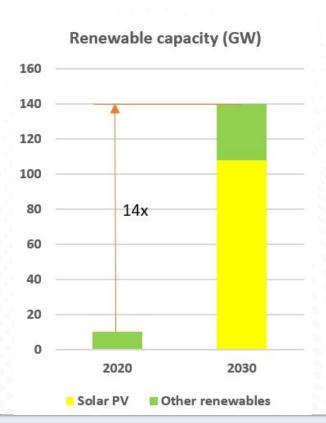
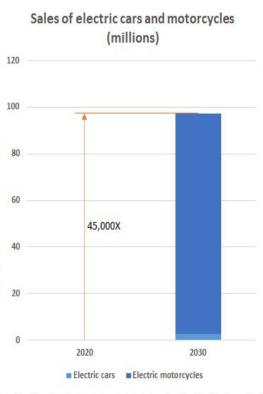
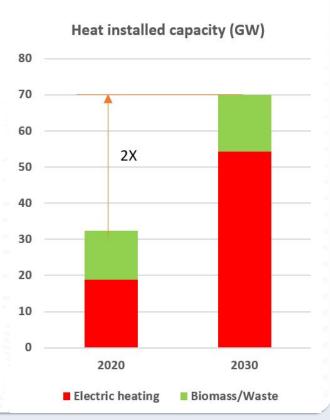


Pamela Simamora

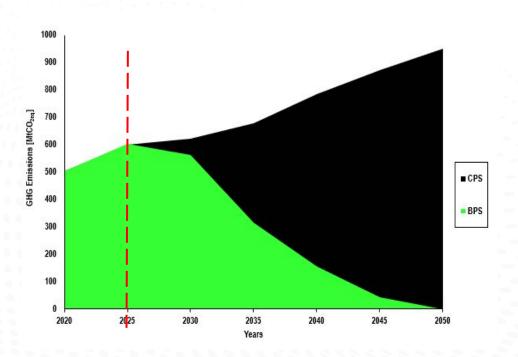
Research Coordinator of nstitute for Essential Services Reform (IESR) 28 May 2021

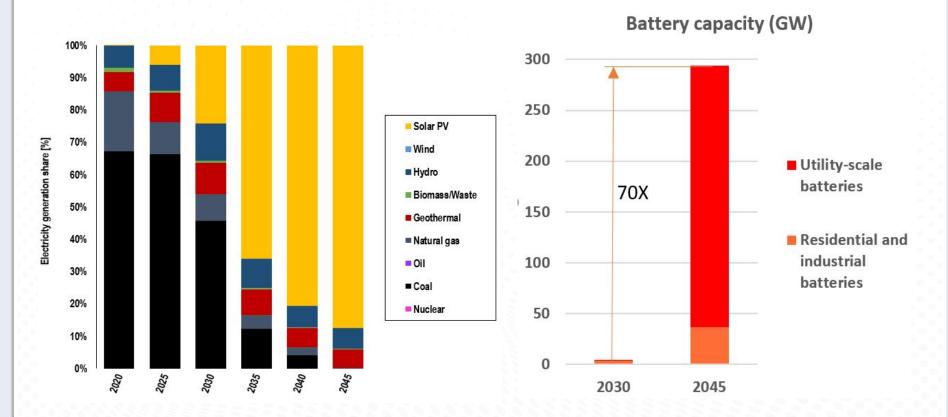

Current Indonesia's Nationally Determined Contribution (NDC) is not aligned with the Paris Agreement, a more ambitious target is required.

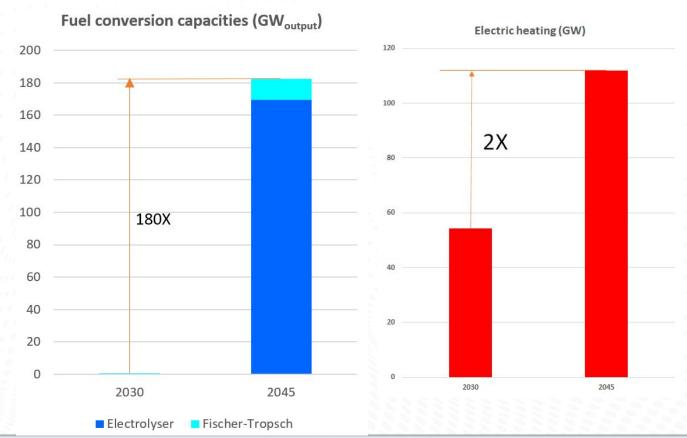


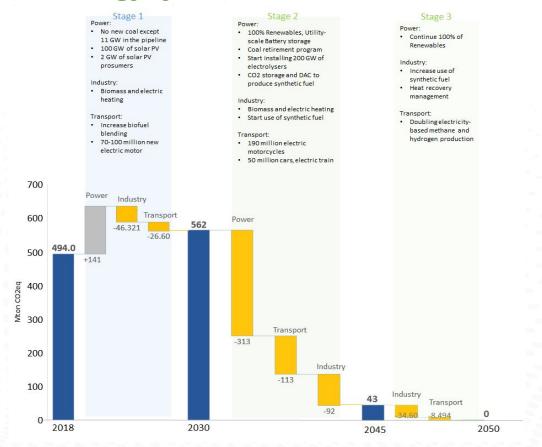


A pathway to zero emissions by 2050

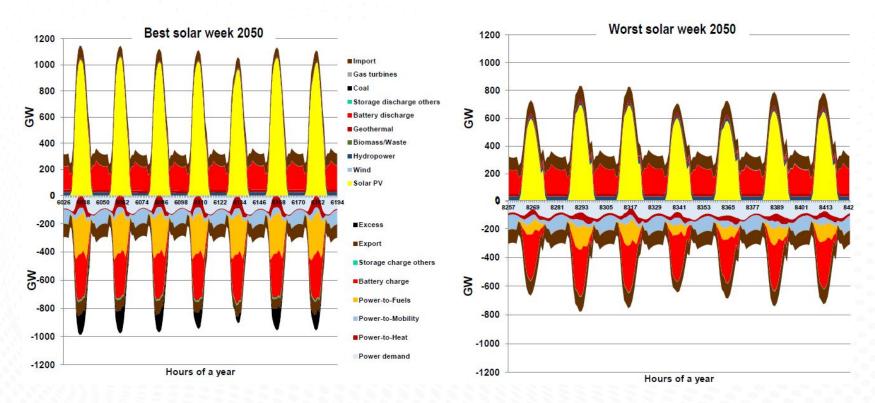

Bending the curve: this decade will determine the outcome of the 2050 emission target

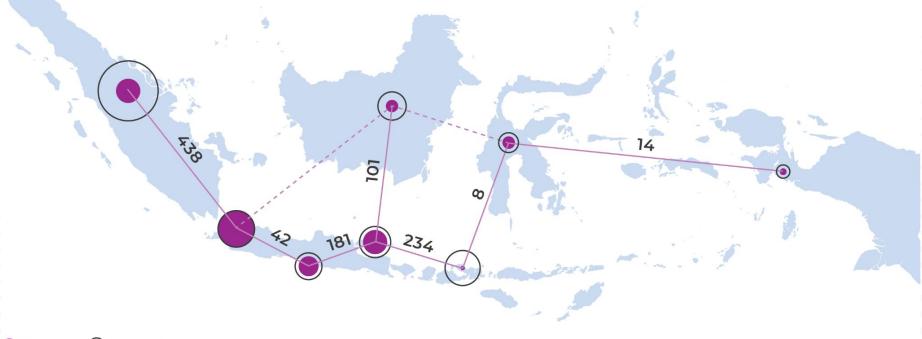



Bending the curve: a call for coal moratorium to peak carbon emissions by 2025


Power sector: The first sector to be carbon free by 2045 through the combination of 100% renewable energy and battery storage

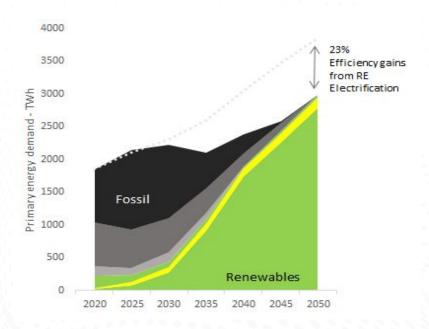
Transport and industry sectors: Synthetic fuels, hydrogen, and electric heating will play a greater role in decarbonization efforts by 2045

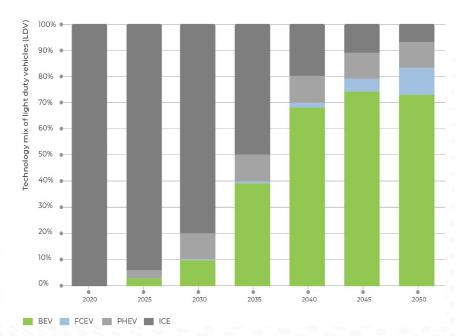

By 2050, all decarbonization efforts made in the previous stages will lead to a zero-emission energy system



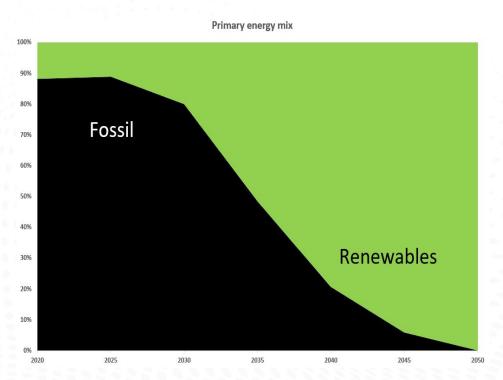
Four pillars of a zero-emission energy system

Pillar 1: Renewable energy Solar energy is the backbone of the energy system

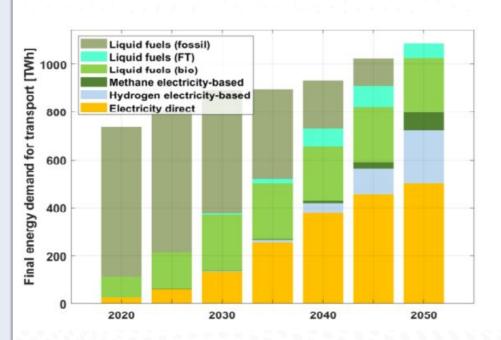

Grid integration is key in a 100% renewable energy system

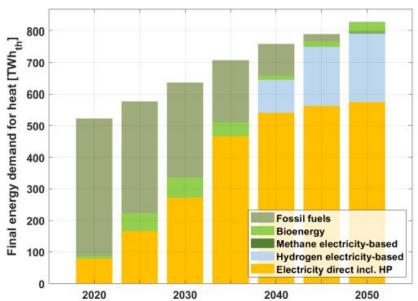


Demand Ogeneration


Future grid planning needs to consider grid expansion and inter-island connection that will enable demand and supply balancing across the archipelago

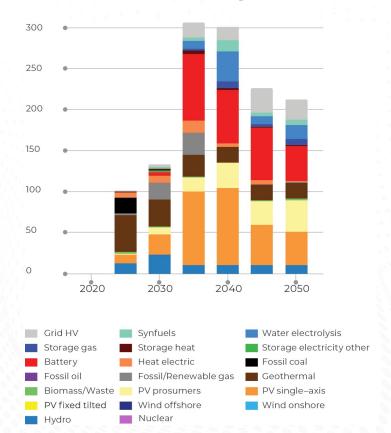
Pillar 2: Electrification Direct electrification is carried out whenever possible

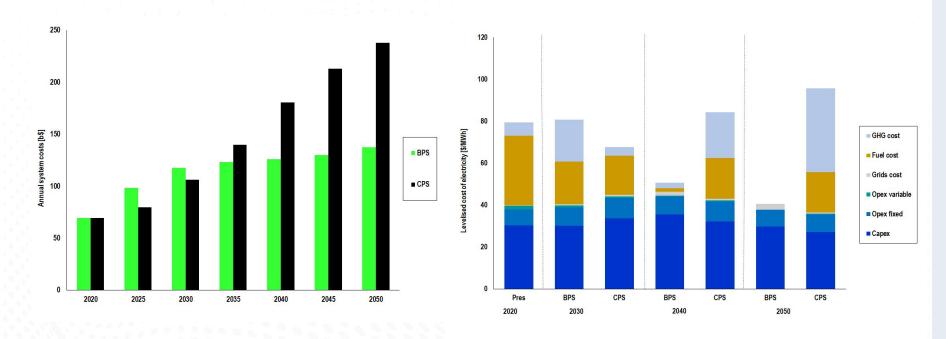



Pillar 3: Fossil fuel decline
Any coal plants built after 2025 would not be utilized for more than
15-20 years

Pillar 4: Clean fuels

Hydrogen, synthetic fuels, and biofuels play important roles in transport and industry

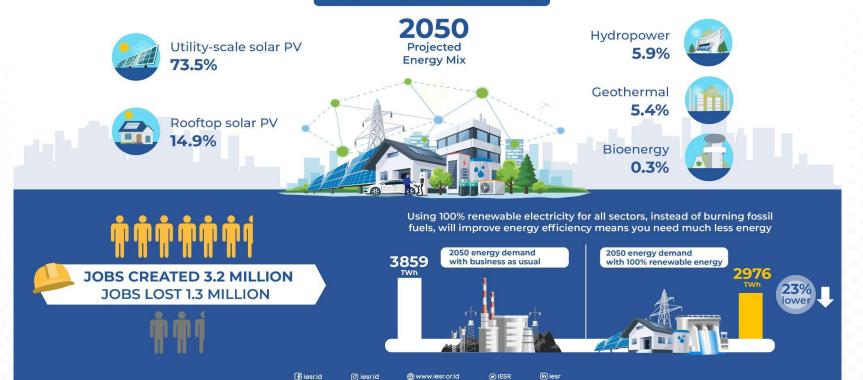



Investment needs and benefits

To achieve zero emissions by 2050, Indonesia needs a large amount of investment that is spread across a variety of technologies

Capex in 10-year intervals [b\$]	2030	2040	2050
PV utility-scale	35.7	183.2	89.8
PV prosumers	9.9	47.4	67.8
Battery	4.8	146.3	106.9
Geothermal	79.1	46.8	38.2
Hydro	36.2	22.2	21.8
Biomass/Waste	2.3	0.9	2.9
Water electrolysis	0	45.9	25.3
Synfuels	2.3	17.8	11.1
Heat electric	14.6	18.7	5.8
Storage gas	0.1	11.2	11.5
Storage heat	3.4	6.5	2
Storage electricity other	2.2	0	0
Grids HV	3.3	34.8	53.9
Fossil coal	19.3	0	0
Natural gas	21.7	26.6	0.6
Fossil oil	0.1	0	0.4
Total	235	608.3	438

Achieving zero emissions by 2050 is not only technically feasible but also economically attainable



Deep decarbonization could bring massive economic opportunities to Indonesia

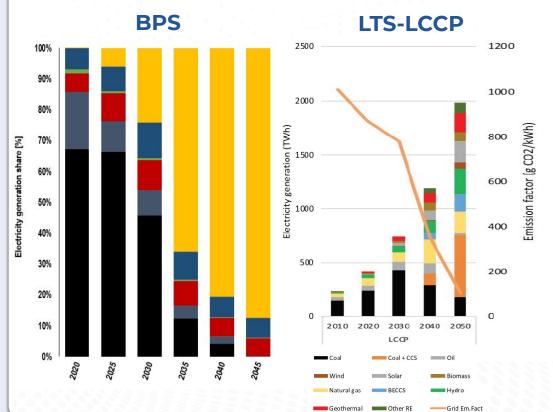
100% RENEWABLE ENERGY IN INDONESIA

Transition to 100% renewable energy for all sectors (electricity, transportation, and heating)

Key takeaways

Deep decarbonization through the use of 100% renewable energy is possible, but it will require transformative changes in the energy sector

Solar PV will become the backbone of the energy system.


Battery storage, electrification, and clean fuels will play a major role in decarbonization efforts

Investment needs are huge, multi-stakeholder participation should be encouraged

Deep decarbonization is essential to not only avoid climate risks but also ensure Indonesia's economic competitiveness

Strong political leadership to make deep decarbonization a national priority is needed now

According to IEA WEO 2020, solar PV will provide the cheapest cost of electricity across all regions. An energy system with a high share of solar PV will be the most competitive one.

		Capital costs (\$/kW)		Capacity factor (%)		Fuel, CO ₂ and O&M (\$/N Wh)		LCOE (\$/M <mark>W</mark> h)	
		2019	2040	2019	2040	2019	040	2019	2040
United States	Nuclear	5 000	4 500	90	90	30	30	105	100
	Coal	2 100	2 100	60	60	65	140	115	185
	Gas CCGT	1 000	1 000	50	50	40	70	65	95
	Solar PV	1 220	580	21	23	10	10	50	25
	Wind onshore	1 560	1 400	42	44	10	10	35	35
	Wind offshore	4 260	1 960	41	48	35	15	115	50
European Union	Nuclear	6 600	4 500	75	75	35	35	150	110
	Coal	2 000	2 000	40	40	95	165	150	225
	Gas CCGT	1 000	1 000	40	40	50	75	80	105
	Solar PV	840	440	13	14	10	10	55	30
	Wind onshore	1 560	1 380	28	31	15	15	55	45
	Wind offshore	3 800	1 820	49	59	15	10	75	35
China	Nuclear	2 600	2 500	80	80	25	25	65	60
	Coal	800	800	60	60	65	140	75	155
	Gas CCGT	560	560	50	50	75	110	90	125
	Solar PV	790	390	17	19	10	5	40	20
	Wind onshore	1 220	1 100	25	27	15	10	50	40
	Wind offshore	3 000	1 480	32	44	25	10	100	40
India	Nuclear	2 800	2 800	80	80	30	30	70	70
	Coal	1 200	1 200	60	60	30	30	55	55
	Gas CCGT	700	700	50	50	45	45	60	60
	Solar PV	610	310	20	21	5	5	35	15
	Wind onshore	1 060	980	26	29	10	10	50	45
	Wind offshore	3 140	1 540	29	38	25	15	130	55

Note: O&M = operation and maintenance; LCOE = levelised cost of electricity; kW = kilowatt; MWh = megawatt-hour; CCGT = combined-cycle gas turbine, LCOE figures are rounded.

Sources: IEA analysis; IRENA Renewable Costing Alliance; IRENA (2020)

Thank You

Accelerating Low Carbon Energy Transition

www.iesr.or.id

- f iesr.id
- ි iesr.id
- **●** IESR
- in iesr