Electrons, molecules, and uncertainty - what future are we planning for?

•	Agora Energiewende - Energy infrastructure for a net-zero future 19 th September 2023		•		•
-		, ,			
	Michael Liebreich	ļ			
-	Founder and CEO	-			•
	Liebreich Associates	÷		-	/
-		÷	•	/	
				/	

Bloomberg New Energy Finance

The Great Energy Price Spike

The Great Clean Energy Acceleration

Source: Liebreich Associates

1 19 September 2023

Agora Infrastructure for Net Zero

Renewables expected to double

"

"Renewables were already expanding quickly, but the global energy crisis has kicked them into an extraordinary new phase of even faster growth as countries seek to capitalise on their **energy security** benefits.

The world is set to add as much renewable power in the next 5 years as it did in the previous 20 years.

Fatih Birol, Executive Director of the IEA

Image: Wikimedia Commons

Liebreich

4 19 September 2023

Agora Infrastructure for Net Zero

@MLCleaningUp @mliebreich

Liebreich

Liebreich

Liebreich

Cheapest source of new build generation, 1H 2023

Source: BloombergNEF, Liebreich Associates

Liebreich

Share of global capacity additions by technology

Global capacity additions excluding retirements

Source: BloombergNEF

Liebreich

Negative wholesale electricity prices in the EU and US

Europe wholesale spot prices, Whitsunday 2023

US wholesale pricing nodes, negative prices 2022

Sources: Gerard Reid, Ryan Wiser, Lawrence Berkeley National Lab

Solving for intermittency – the hunt is on

Image: Thomas P Peschak

Liebreich

Associates

10 19 September 2023

Electrification of transport and heat

Images: Rivian; Daikin

EV sales

Global EV share of passenger vehicle sales EV share of passenger vehicle sales in Europe

EU heat pump installations

Source: EHPA

13 19 September 2023

Agora Infrastructure for Net Zero

Liebreich Industrial heat by power source Associates (EJ) ----Chemicals 15% -5% FE -7% FE Iron & Steel 14% 12.5 Electricity -20% FE Chemicals 17% Other 70% Iron & Steel 9% Fossil fuel 10.0 Chemicals 43% Other 73% **Potential 78%** 7.5 reduction using mature technologies 5.0 Iron & Steel 19% Cement 4% Chemicals 64% 2.5 Other 34% Iron & Steel 31% Cement 5% 0.0 2015 Sta Source: Madeddu et al 2019 Stage 1 Stage 3

Note: List of companies is illustrative, not exhaustive.

16 19 September 2023

Agora Infrastructure for Net Zero

@MLCleaningUp @mliebreich

Source: Liebreich Associates

Liebreich

Thermal stores and buffering technologies landscape

Note: List of companies is illustrative, not exhaustive.

17 19 September 2023

Agora Infrastructure for Net Zero

Source: Liebreich Associates

Liebreich

Associates

Five Horsemen of the Net Zero Transition

Liebreich

Hydrogen

Image: Wikimedia Commons

19 19 September 2023

Agora Infrastructure for Net Zero

"

Hydrogen economy

Instead of the gas currently used for industry, heating and fuels, we will ensure hydrogen can be used – the gas of the future – and we will create a huge boom.

> Olaf Scholz, German Chancellor September 2022

dass wir einen großen Boom auslösen werden.

Image: DW

Clean Hydrogen Swiss Army Knife

Global BEV vs. FCV sales quarterly

Battery electric vehicles

Fuel cell vehicles

Note: Includes BEV sales include PHEVs

Source: BloombergNEF

Hydrogen vs BEV platforms

H2FC drive train

Image: Beaudaniels.com

Image: SNECI

23 19 September 2023

Agora Infrastructure for Net Zero

Image: Beaudaniels.com

Image: SNECI

24 19 September 2023

Agora Infrastructure for Net Zero

How it started... how it's going

May 2021

Today, we launch our #H2 #station #rollout plan for #Denmark with an ambition of deploying 19 #fueling sites for #zero #emission #transport by end of 2023. This completes our Scandinavian green #hydrogen fueling strategy for #trucks, #buses and #cars in Sweden, Norway and Denmark

September 2023

All hydrogen stations in Denmark close

"We cannot justify throwing more money at subsidizing hydrogen alone," states Everfuel's director, who however does not want to kill the future of hydrogen in passenger cars.

Photo: Everfuel

Source: Everfuel, Twitter

Hydrogen buses – Montpellier experience

"

Hydrogen buses were €150,000-200,000 more expensive to buy than their electric counterparts.

Operation of the hydrogen buses would cost €3m per year, compared to €500,000 with electric ones — or €0.95 per km versus €0.15.

> Julie Frêche, VP Transport Montpellier Méditerranée Métropole Speaking to La Tribune

Image: Van Hool

Agora Infrastructure for Net Zero

Hydrogen trains – Lower Saxony 2023

The basis for the purchase of the new battery-powered is market research into alternative drives, which LNVG carried out.

In particular, trains with hydrogen drives and batteries were considered. Result: battery trains are cheaper to operate.

Ministry for Economic Affairs, Transport, Building and Digitisation – Lower Saxony

Image: Reuters

Zero-carbon forklift trucks

Hydrogen fork lift truck

Images: Toyota

Electric and hydrogen forklift sales

Electric

Hydrogen

Source: Liebreich Associates; various

29 19 September 2023

Note: 2023 sales are estimated

Agora Infrastructure for Net Zero

E-Fuels for electromobility

"

We need e-fuels to achieve our climate protection goals. Electricity-based synthetic fuels are an important and necessary addition to electromobility.

Volker Wissing (FDP) German Minister of Digital Affairs and Transport

Image: Wikimedia Commons

Levelised production cost of e-fuels in EU

Note: Cost of e-fuels are distributed by energy percentage from Fischer-Tropsch synthesis. FT efficiency of 73%. Fuel prices as of Sept 2023.

Sources: <u>ICCT</u> (2022), <u>Transport & Environment</u> (2023), <u>Concawe</u> (2022), Bloomberg, Liebreich Associates

31 19 September 2023

Agora Infrastructure for Net Zero

@MLCleaningUp @mliebreich

Liebreich

Levelised production cost of e-fuels in EU

 Note: Cost of e-fuels are distributed by energy percentage from Fischer-Tropsch synthesis.
 Sources: ICCT (2022), Transport & Environment (2023),

 FT efficiency of 73%. Fuel prices as of Sept 2023.
 Concawe (2022), Bloomberg, Liebreich Associates

32 19 September 2023

Agora Infrastructure for Net Zero

@MLCleaningUp @mliebreich

Liebreich

Levelised production cost of e-fuels in EU

 Note: Cost of e-fuels are distributed by energy percentage from Fischer-Tropsch synthesis.
 Sources: ICCT (2022), Transport & Environment (2023),

 FT efficiency of 73%. Fuel prices as of Sept 2023.
 Concawe (2022), Bloomberg, Liebreich Associates

33 19 September 2023

Agora Infrastructure for Net Zero

Clean Hydrogen Ladder: Competing technologies

* Most likely via ammonia or e-fuel rather than H2 gas or liquid

Source: Michael Liebreich/Liebreich Associates, <u>Clean Hydrogen Ladder</u>, <u>Version 4.1, 2021</u>.Concept credit: Adrian Hiel, Energy Cities. <u>CC-BY 3.0</u>

34 19 September 2023

Agora Infrastructure for Net Zero

Liebreich

Hydrogen economics

Note: Pink hydrogen includes nuclear and geothermal Sources: BloombergNEF, Lucid Catalyst, Hydrogen Council, IRENA, IEA, ETC, Liebreich Associates

35 19 September 2023

Agora Infrastructure for Net Zero

NEOM Green Hydrogen/Ammonia Project

Cost: SAR 31.5 Billion (\$USD 8.4 Billion) Renewable generation: 4 GW Announced commissioning year: 2026 H2 production: 0.22 Million tonnes/year Ammonia production: 1.24 Million tonnes/year

0.2% of current global hydrogen demand0.7% of current global ammonia demand

Source: NEOM, GlobalData, Liebreich Associates

Image: NEOM

36 19 September 2023

Agora Infrastructure for Net Zero

@MLCleaningUp @mliebreich

Liebreich

Clean Hydrogen Ladder: Competing technologies

* Most likely via ammonia or e-fuel rather than H2 gas or liquid

Source: Michael Liebreich/Liebreich Associates, <u>Clean Hydrogen Ladder</u>, <u>Version 4.1, 2021</u>.Concept credit: Adrian Hiel, Energy Cities. <u>CC-BY 3.0</u>

Liebreich

Clean Hydrogen Ladder: Competing technologies

* Most likely via ammonia or e-fuel rather than H2 gas or liquid

Source: Michael Liebreich/Liebreich Associates, <u>Clean Hydrogen Ladder</u>, <u>Version 4.1, 2021</u>.Concept credit: Adrian Hiel, Energy Cities. <u>CC-BY 3.0</u>

Liebreich

Hydrogen shipping vs LNG – some physics

LNG Carrier Q-Max Mozah

Volume:	266,000 cbm
Volumetric density:	22.2 MJ/litre
Total load:	5.9 x 10^15 J
Temperature:	-162 C
Liquefaction losses:	10%
Boil-off:	0.1% per day

Hydrogen carrier Suiso Frontier

0.2% of the energy carried by a Q-Max

Volume:	1,250 cbm
Volumetric density:	8.5 MJ/litre
Total load:	1.1 x 10^13 J
Temperature:	-253 C
Liquefaction losses:	33%
Boil-off:	1% per day

Images: Qatar Gas, Kawasaki Heavy Industries, MHI Source: Liebreich Associates

Liebreich

Electricity imports – hydrogen, ammonia, HVDC

Power – hydrogen – power

5x as many ships as LNG

Total Efficiency:	26%
Generation efficiency:	60%
Transport efficiency:	80%
Liquefaction efficiency	67%
Electrolysis efficiency:	80%

Power – ammonia – power HVDC

Easier – but even	less efficient
Electrolysis efficiency:	80%
Haber Bosch efficiency:	70%
Liquefaction efficiency	90%
Transport efficiency:	90%
Generation efficiency:	50%
Total efficiency:	23%

3.2 x as efficient

Total efficiency:	
Conversion efficiency HVDC to grid:	
Transport efficiency (3% loss per 1000km)	88%
Conversion efficiency to HVDC:	

Images: Kawasaki Heavy Industries; NYK; Suncable Source: Liebreich Associates

41 19 September 2023

Agora Infrastructure for Net Zero

42 19 September 2023

Agora Infrastructure for Net Zero

43 19 September 2023

Agora Infrastructure for Net Zero

michael@liebreichassociates.com www.liebreich.com @mliebreich